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Abstract

Non-negative matrix factorization (NMF) has previously been shown to
be a useful decomposition for multivariate data. Two different multi-
plicative algorithms for NMF are analyzed. They differ only slightly in
the multiplicative factor used in the update rules. One algorithm can be
shown to minimize the conventional least squares error while the other
minimizes the generalized Kullback-Leibler divergence. The monotonic
convergence of both algorithms can be proven using an auxiliary func-
tion analogous to that used for proving convergence of the Expectation-
Maximization algorithm. The algorithms can also be interpreted as diag-
onally rescaled gradient descent, where the rescaling factor is optimally
chosen to ensure convergence.

Introduction

Unsupervised learning algorithms such as principal components analysis and vector quan-
tization can be understood as factorizing a data matrix subject to different constraints. De-
pending upon the constraints utilized, the resulting factors can be shown to have very dif-
ferent representational properties. Principal components analysis enforces only a weak or-
thogonality constraint, resulting in a very distributed representation that uses cancellations
to generate variability [1, 2]. On the other hand, vector quantization uses a hard winner-
take-all constraint that results in clustering the data into mutually exclusive prototypes [3].

We have previously shown that nonnegativity is a useful constraint for matrix factorization
that can learn a parts representation of the data [4, 5]. The nonnegative basis vectors that are
learned are used in distributed, yet still sparse combinations to generate expressiveness in
the reconstructions [6, 7]. In this submission, we analyze in detail two numerical algorithms
for learning the optimal nonnegative factors from data.

Non-negative matrix factorization

We formally consider algorithms for solving the following problem:

Non-negative matrix factorization (NMF) Given a non-negative matrix
V, find non-negative matrix facto#$ and H such that:

VaWH (1)



NMF can be applied to the statistical analysis of multivariate data in the following manner.
Given a set of of multivariate.-dimensional data vectors, the vectors are placed in the
columns of am x m matrix V- wherem is the number of examples in the data set. This
matrix is then approximately factorized into anx » matrix W and anr x m matrix H.
Usuallyr is chosen to be smaller tharor m, so thai? andH are smaller than the original
matrix V. This results in a compressed version of the original data matrix.

What is the significance of the approximation in Eq. (1)? It can be rewritten column by
column asv ~ Wh, wherev andh are the corresponding columnséfand H. In other

words, each data vectoris approximated by a linear combination of the column$iaf
weighted by the components 6f Thereforel¥ can be regarded as containing a basis
that is optimized for the linear approximation of the datd/inSince relatively few basis
vectors are used to represent many data vectors, good approximation can only be achieved
if the basis vectors discover structure that is latent in the data.

The present submission is not about applications of NMF, but focuses instead on the tech-
nical aspects of finding non-negative matrix factorizations. Of course, other types of ma-
trix factorizations have been extensively studied in numerical linear algebra, but the non-
negativity constraint makes much of this previous work inapplicable to the present case

[8].

Here we discuss two algorithms for NMF based on iterative updatds afhd H. Because

these algorithms are very easy to code and use, we have found them very useful in practical
applications. Other algorithms may possibly be more efficient in overall computation time,
but can be considerably more difficult to implement. Algorithms similar to ours where only
one of the factors is adapted have previously been used for the deconvolution of emission
tomography and astronomical images [9, 10, 11].

At each iteration of our algorithms, the new valuelgfor H is found by multiplying the
currentvalue by some factor that depends on the quality of the approximationin Eq. (1). We
prove that the quality of the approximation improves monotonically with the application
of these multiplicative update rules. In practice, this means that repeated iteration of the
update rules is guaranteed to converge to a locally optimal matrix factorization.

Cost functions

To find an approximate factorization ~ W H, we first need to define cost functions
that quantifies the quality of the approximation. Such a cost function can be constructed
using some measure of distance between two non-negative matremed B. One useful
measure is simply the square of the Euclidean distance betwesd B [12],

|A=B|” = (Ai; — Bij)’ (2
ij
This is lower bounded by zero, and clearly vanishes if and only# B.
Another useful measure is

A
D(AHB) = %: <Aij log B—Z — Aij + Bij> 3)
Like the Euclidean distance this is also lower bounded by zero, and vanishes if and only
if A = B. But it cannot be called a “distance”, because it is not symmetrid and B,

so we will refer to it as the “divergence” of from B. It reduces to the Kullback-Leibler
divergence, or relative entropy, whén,; A;; = >_,; Bi; = 1, so that4 and B can be
regarded as normalized probability distributions.

We now consider two alternative formulations of NMF as optimization problems:



Problem 1 Minimize ||V — W H||? with respect to" and H, subject to the constraints
W,H >0.

Problem 2 Minimize D(V||W H) with respect tol¥’ and H, subject to the constraints
W,H >0.

Although the functionlV —W H ||?> andD (V' ||W H) are convex ¥ only or H only, they

are not convex in both variables together. Therefore it is unrealistic to expect an algorithm
to solve Problems 1 and 2 in the sense of finding global minima. However, there are many
technigues from numerical optimization that can be applied to find local minima.

Gradient descent is perhaps the simplest technique to implement, but convergence can be
slow. Other methods such as conjugate gradient have faster convergence, at least in the
vicinity of local minima, but are more complicated to implement than gradient descent
[8]. The convergence of gradient based methods also have the disadvantage of being very
sensitive to the choice of step size, which can be very inconvenient for large applications.

Multiplicative update rules

We have found that the following “multiplicative update rules” are a good compromise
between speed and ease of implementation for solving Problems 1 and 2.

Theorem 1 The Euclidean distand¢l” — W H|| is nonincreasing under the update rules

(WTV)au (VHT)ia

H,, « H,,— o _\V A Jia
an B Tw )., (WHHT)

Wia +— Wiq (4)

The Euclidean distance is invariant under these updates if and ofly &nd H are at a
stationary point of the distance.

Theorem 2 The divergenc® (V|| H) is nonincreasing under the update rules
Zi Wial/iu/(WH)iu Zu HGHWM/(WH)W
Zk Wka Zu Hat/

The divergence is invariant under these updates if and ofly &nd H are at a stationary
point of the divergence.

Hy, <+ Hyy,

Wia — Wia

(®)

Proofs of these theorems are given in a later section. For now, we note that each update
consists of multiplication by a factor. In particular, it is straightforward to see that this
multiplicative factor is unity whe’ = W H, so that perfect reconstruction is necessarily

a fixed point of the update rules.

Multiplicative versus additive update rules

It is useful to contrast these multiplicative updates with those arising from gradient descent
[13]. In particular, a simple additive update fBrthat reduces the squared distance can be
written as

Hay < Hopy + Nap [(WTV)au - (WTWH)LW] - (6)

If n., are all set equal to some small positive number, this is equivalent to conventional
gradient descent. As long as this number is sufficiently small, the update should reduce
|V —WH]||.



Now if we diagonally rescale the variables and set
H,,

ap = T T 7
T = WTW H)a, (7)
then we obtain the update rule féfF that is given in Theorem 1.
For the divergence, diagonally rescaled gradient descent takes the form

Ha,u — Hau + Nap ZWia WV];-_; - ZWia . (8)

Again, if then,,, are small and positive, this update should redi¢® ||V H). If we now

set
H,,

Nap = )
o Et Wia
then we obtain the update rule féF that is given in Theorem 2.

(9)

Since our choices fay,,, are not small, it may seem that there is no guarantee that such a
rescaled gradient descent should cause the cost function to decrease. Surprisingly, this is
indeed the case as shown in the next section.

Proofs of convergence

To prove Theorems 1 and 2, we will make use of an auxiliary function similar to that used
in the Expectation-Maximization algorithm [14, 15].

Definition 1 G(h, k') is anauxiliary functionfor F'(h) if the conditions
G(h,l') > F(h),  G(h,h) =F(h) (10)
are satisfied.

The auxiliary function is a useful concept because of the following lemma, which is also
graphically illustrated in Fig. 1.

Lemma 1 If G is an auxiliary function, thet# is nonincreasing under the update
Rttt = arg min G(h,h") (11)

Proof: F(ht*!) < G(ht*!, ht) < G(ht,ht) = F(h') W

Note thatF'(h!*1) = F(h!) only if h! is a local minimum ofG(h, ht). If the derivatives

of F exist and are continuous in a small neighborhood/fthis also implies that the
derivativesV F'(h') = 0. Thus, by iterating the update in Eq. (11) we obtain a sequence
of estimates that converge to a local miniméiy;,, = argminy, F'(h) of the objective
function:

F(hmin) < ..F (R < F(RY)... < F(h2) < F(h1) < F(ho). (12)

We will show that by defining the appropriate auxiliary functién@, ht) for both ||V —
WH|| andD(V,W H), the update rules in Theorems 1 and 2 easily follow from Eq. (11).

Lemma 2 If K (ht) is the diagonal matrix

[(ab(ht) = 5ab(WTWht)a/hfz (13)
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Figure 1: Minimizing the auxiliary functiot?(h, ht) > F(h) guarantees thaf(h!+1) <
F(ht) for k"t = argminy, G(h, ht).

then
G(h,ht) = F(h') + (h — K)YTVF(Rt) + %(h — HTK () (h — nt) (14)

is an auxiliary function for

F(h) = % Z(Uz - Z Wiaha)2 (15)

i

Proof: SinceG(h,h) = F(h) is obvious, we need only show th@{h, k') > F(h). To
do this, we compare

F(h) = F(h') + (h— BH)TVE(R') + %(h —OYT(WTW)(h — ht) (16)

with Eq. (14) to find that?(h, ht) > F(h) is equivalent to

0 < (h—hmYTK (R = WTW](h — h) (17)
To prove positive semidefiniteness, consider the matrix
Map(h') = b (K (hY) — WTW)apht (18)

which is just a rescaling of the componentgof W7 TW. ThenK — W TW is semipositive
definite if and only ifM is, and

vIMy = Z VaMapvp (29)
ab
= D B WTW)aphpvy — vahly(WTW)aplivs (20)
ab
= Z(WTW)athhi [%Vg + %y? — Vgl (21)
ab
1
= 3 S (WIW)aphlyht(va — 1) (22)
ab
> 0 (23)

'One can also show th& — W™ W is semipositive definite by considering the mathix (I —

K 2WTWK~2)K2. Then\/hL (WTWhi), is a positive eigenvector df ~ 2 W7 W K~z with
unity eigenvalue and application of the Frobenius-Perron theorem shows that Eq. 17 holds.



We can now demonstrate the convergence of Theorem 1:
Proof of Theorem 1ReplacingG (h, ht) in Eq. (11) by Eq. (14) results in the update rule:
Rt =ht — K(h') "'V F(h) (24)

Since Eq. (14) is an auxiliary functiof; is nonincreasing under this update rule, according

to Lemma 1. Writing the components of this equation explicitly, we obtain
(WT2)q

C(WTWht),"

By reversing the roles off” and H in Lemma 1 and 2F can similarly be shown to be

nonincreasing under the update rulesifor B

Rttt = pt (25)

We now consider the following auxiliary function for the divergence cost function:

Lemma 3 Define

G(h, k") = Z(vi logv; — vi) + Z Wiaha (26)
za Wzaht )
v; “ log Wiahe — lo 27
Z Zb tbht ( & &, Wl Zb tbht 27)
This is an auxiliary function for
v;
h) = ;’Ui IOg <m> — U; +;Wiaha (28)

Proof: Itis straightforward to verify thaf(h, h) = F(h). To show that(h, ht) > F(h),
we use convexity of the log function to derive the inequality

Wiaha
—1 iahe < — o log ——— 29
which holds for all nonnegativwe, that sum to unity. Setting
Wiohl
Qg = 30
S (30)

we obtain

Wiaht Wiaht
_ logz Wiaha < — Z Wl <log Wiahe — log AL ht> (31)

From this |nequal|ty it follows thaF( ) < G(h,ht). B
Theorem 2 then follows from the application of Lemma 1:

Proof of Theorem 2: The minimum ofG (h, ht) with respect tdh is determined by setting
the gradient to zero:

dG(h, ht) h ht)  Wiaht 1
Z RIS +ZWm:0 (32)

Thus, the update rule of Eq. (11) takes the form

ht+1 _

a Ui
X Wk ZZ: 2 Wanh,

SinceG is an auxiliary functionF' in Eq. (28) is nonincreasing under this update. Rewrit-
ten in matrix form, this is equivalent to the update rule in Eq. (5). By reversing the roles of
H andWV, the update rule for/” can similarly be shown to be nonincreasiily.

Wip. (33)



Discussion

We have shown that application of the update rules in Egs. (4) and (5) are guaranteed to
find at least locally optimal solutions of Problems 1 and 2, respectively. The convergence
proofs rely upon defining an appropriate auxiliary function. We are currently working to

generalize these theorems to more complex constraints. The update rules themselves are

extremely easy to implement computationally, and will hopefully be utilized by others for
a wide variety of applications.
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